Shen Ren

sren@seattleu.edu • Seattle, WA • (206) 296-2114

EDUCATION

University of Washington

Seattle, WA

PhD, Mechanical Engineering,

2016 - 2020

- Dissertation Title: Development of an Automated Resonance Electromagnetic Rewarming System for the Cryopreservation of Large-scale Biomaterials
- Supervisor: Professor Dayong Gao

University of Washington

Seattle, WA

Master of Science, Mechanical Engineering,

2014 - 2016

Nanjing University of Science and Technology

Nanjing, China

B.S. Mechanical Engineering

2009 - 2013

TEACHING EXPERIENCE

Seattle University

Seattle, WA

Instructor 2021 - Present

- MEGR 1050 Engineering Graphics and Design, 3 Credits
- MEGR 3240 Heat Transfer, 4 Credits
- CEEGR 3310 Fluid Mechanics, 4 Credits
- MEGR 4870/4880/4890 Engineering Design, 3/4/3 Credits
- MEGR 5200, Energy Systems, 3 Credits
- MEGR 5030 Applied Fluid Dynamics, 3 Credits

University of Washington

Seattle, WA

- Engineering Thermodynamics, ME323
 - o Instructor, Winter 2019, Winter 2021.
 - Teaching Assistant, six quarters (Fall 2016, Winter 2017, Fall 2017, Winter 2018, Fall 2018, and Winter 2020).
- Introduction to Heat Transfer, ME331
 - o Instructor, Spring 2019, Spring 2021.
 - Teaching Assistant, four quarters (Spring 2016, Spring 2017, Spring 2018, and Fall 2019).
- Applied Statistics and Probability for Engineers, ME498
 - o Instructor, Spring 2020

RESEARCH EXPERIENCE

Center for Cryo-Biomedical Engineering and Artificial Organs

Seattle, WA

Postdoctoral Scholar, Lab Manager

2020 - 2021

- Including 3 research laboratories
 - Cryo-Biomedical Engineering and Cryobiology Lab
 - Artificial Organs Lab
 - Bio-instrument Lab

Research Assistant 2014 — 2020

- Developed an automatic single mode electromagnetic resonance rewarming system.
- Developed a real-time resonant frequency monitoring and controlling system. Combined multiple electrical and temperature sensors to conduct the feedback control loop.
- Adopted superparamagnetic nanoparticles to enhance the energy conversion efficiency.
- Improved the cryopreservation of large-scale Jurkat cell suspensions, and achieved vitreous preservation of rabbit jugular veins while maintain the biological functionalities.

Center for Dialysis Innovation

Seattle, WA

Research Project Lead

2017—present

- Developing and prototyping a portable medical device used for Kidney Failure's patient.
- Developing the sub-systems and technologies to the portable device, including a real-time monitoring and controlling system, compatibility&mobility system, and disposable tubing.
- Designed and established a full-scale benchtop system to serve as a testing platform for sub-systems and prototype development.

ENGINEERING WORK EXPERIENCE

Solarc Energy Consulting Group LLC

Seattle, WA

Energy Analyst

2017-2019

- Investigated energy consumption status of dwelling units and office spaces in Seattle area.
- Developed energy usage model to simulate and analysis annual HVAC system and identified strategies to improve energy efficiency and reduce energy cost.

AWARDS AND HONORS

Exceptional Ph.D. Dissertation Award
University of Washington

June 2021

Peter L. Steponkus Crystal Award

Society for Cryobiology

June 2021

Outstanding Ph.D. Student Paper Competition Finalist

ASME-BED/SB3C

June 2021

Best Undergraduate Thesis Award

Nanjing University of Science and Technology

July 2013

Outstanding Graduate Scholarship

Nanjing University of Science and Technology

July 2013

ISS Excellence in Service and Outreach Award

University of California – Riverside

March 2013

National Scholarship

Nanjing University of Science and Technology

November 2011

Outstanding Freshman Scholarship

Nanjing University of Science and Technology

July 2010

MENTORING AND ADVISING

Washington State University - Everett

Seattle, WA

Capstone Project Mentor

2019-2020

Project Title: A Portable Flow Rate Control System for Artificial Organ

Advisors or Mentors: Shen Ren, Prof. Zhiquan Shu, Prof. Xiaopeng Bi, Prof. Dayong Gao

Team members: Claire Jackson, Jacob Knibbe, Michael Korody, Miranda Stewart

University of Washington

Seattle, WA

Research Project Mentor

2017-present

Master students: Nanye Du, Shaohang Hao, Steve Jin, Miles Ma, Yanyi Wang, Ziyuan Wang

Undergraduate students: Leo Tao (2017-2019), Shawn Ma (2017-present)

Interlake High School

Seattle, WA

Gifted High School Program Mentor

2018-present

Students: Jacob Zhang (2018-2019), Amy Jiang (2019 Summer), Jason Qian (2019-2020)

PUBLICATIONS

Book Chapter

- 1. **Shen Ren**, Zhiquan Shu, Jiaji Pan, Ji Peng, Junlan Wang, Chunhua Zhao and Dayong Gao (November 10th 2020). Development of a Novel Electromagnetic Rewarming Technology for the Cryopreservation of Stem Cells with Large Volume [Online First], IntechOpen, DOI: 10.5772/intechopen.94556.
- 2. Development of a numerical model for electromagnetic resonance rewarming technology, Ji Peng, **Shen Ren**, and Dayong Gao,

To appear in IntechOpen, 2021.

Peer-Reviewed Scientific Journal Papers

- 1. Jiaji Pan, **Shen Ren**, Praveen K. Sekar, Ji Peng, Zhiquan Shu, Ming Chen, Dayong Gao, Investigation of Electromagnetic Resonance Rewarming Enhanced by Magnetic Nanoparticles for Cryopreservation, Langmuir 2019, 35, 23, 7560-7570.
- 2. Ji Peng, Cifeng Fang, **Shen Ren**, Jiaji Pan, Zhiquan Shu, and Dayong Gao, Development of a microfluidic device with on-chip active cooling and heating components by heat transfer analysis, International Journal of Heat and Mass Transfer, 2019, 130, 660-667.
- 3. Jiaji Pan, Zhiquan Shu, Gang Zhao, Weiping Ding, **Shen Ren**, Praveen K Sekar, Ji Peng, John Kramlich, Ming Chen, Dayong Gao, Towards uniform and fast rewarming for cryopreservation with electromagnetic resonance cavity: numerical simulation and experimental investigation, Applied Thermal Engineering, 2018, 140, 25 July 2018, Pages 787-798. https://doi.org/10.1016/j.applthermaleng.2018.05.015
- 4. Jiaji Pan, Zhiquan Shu, **Shen Ren**, and Dayong Gao, Determination of Dielectric Properties of Cryoprotective Agent Solutions with a Resonant Cavity for the Electromagnetic Rewarming in Cryopreservation, Biopreservation and Biobanking, Oct2017.404-409. http://doi.org/10.1089/bio.2016.0096

SELECTED CONFERENCE PRESENTATIONS

- Shen Ren, Zhiquan Shu, Ziyuan Wang, Ye Jin, Ruidong Ma, Shaohang Hao, and Dayong Gao, Successful Viterous Cryopreservation of Rabbit Jugular Vein Using Magnetic Nanoparticles Enhanced Single-mode Electromagnetic Resonance (SMER) Rewarming System, the 58th Annual Meeting of the Society for Cryobiology, July 20-23, 2021.
- 2. **Shen Ren**, Zhiquan Shu, Ziyuan Wang, Ye Jin, Ruidong Ma, Shaohang Hao, and Dayong Gao, Successful Cryopreservation of Rabbit Jugular Vein Using Magnetic Nanoparticles Enhanced Single-mode Electromagnetic Resonance Rewarming System, Summer Biomechanics, Bioengineering, and Biotransport Conference, June 14-18, 2021.
- 3. **Shen Ren**, Zhiquan Shu, Ji Peng, and Dayong Gao, Development of electromagnetic resonance technology for rapid-uniform rewarming of large volume of cryopreserved biomaterials, the 57th Annual Meeting of the Society for Cryobiology, July 21-23, 2020, Virtual Meerting.
- 4. **Shen Ren**, Zhiquan Shu, Tianhang Yang, Ji Peng, and Dayong Gao, Optimization of the hybrid electromagnetic-conduction rewarming system for bio-specimen with large volume, the 56th Annual Meeting of the Society for Cryobiology, July 22-25, 2019, San Diego, USA.
- 5. **Shen Ren**, Jiaji Pan, Zhiquan Shu, Tianhang Yang, Ji Peng, Dayong Gao, A hybrid rewarming system consisting of electromagnetic heating and conventional thermal conduction for large volume biospecimen, the 55th Annual Meeting of the Society for Cryobiology, July 10-13, 2018, Madrid, Spain.
- 6. **Shen Ren**, Zhiquan Shu, Jiaji Pan, and Dayong Gao, Towards non-freezing cryopreservation at -85C with a cryoprotectant cocktail, the 54th Annual Meeting of the Society for Cryobiology, July 20-24, 2017, Hefei, Anhui, China.
- 7. **Shen Ren**, Jiaji Pan, Zhiquan Shu, and Dayong Gao, Determination of the Temperature-Dependent Specific Heat Capacity of Various Vitrification Solutions by Di²erential Scanning Calorimetry (DSC), the 53rd Annual Meeting of the Society for Cryobiology, July 24-27, 2016, Ottawa, Canada.

ACADEMIC SERVICES AND MEMBERSHIPS

2017-present
2021-present
2019-present
2021-present
2014-present
2018-present
2020-present

PATENTS APPLIED

- Dayong Gao, Shaohang Hao, Ye Jin, Ruidong Ma, Shen Ren, Zhiquan Shu, Ziyuan Wang, "Automatic Single-mode Electromagnetic Resonance System for Cryopresrvation of Large-scale Biomaterials,"
 - US Application Number 63/194,401, May 28, 2021
- 2. **Shen Ren**, Ye Jin, Dayong Gao, "Portable Hemofiltration Components, Systems, and Methods,"
 - US Application Number 63/183,482, May 3, 2021