

- This device is for use as a medium power amplifier and switch
- requiring collector currents up to 500mA.
- Sourced from process 19.

Absolute Maximum Ratings * T_a=25°C unless otherwise noted

Symbol	Parameter	Value	Units
V _{CEO}	Collector-Emitter Voltage	40	V
√ _{CBO}	Collector-Base Voltage	75	V
√ _{EBO}	Emitter-Base Voltage	6.0	V
с	Collector Current	1.0	А
Г _{STG}	Operating and Storage Junction Temperature Range	- 55 ~ 150	°C

* These ratings are limiting values above which the serviceability of any semiconductor device may be impaired

NOTES:

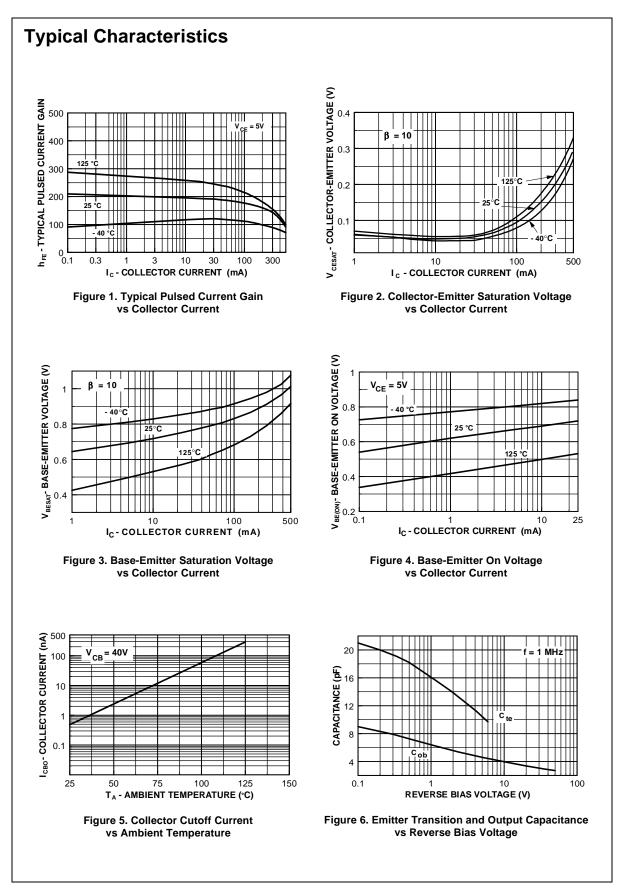
These ratings are based on a maximum junction temperature of 150 degrees C.
 These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations

Electrical Characteristics T_a=25°C unless otherwise noted

Symbol	Parameter	Test Condition	Min.	Max.	Units
Off Charact	eristics				
BV _{(BR)CEO}	Collector-Emitter Breakdown Voltage *	* $I_{\rm C} = 10$ mA, $I_{\rm B} = 0$ 40			V
BV _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_{\rm C} = 10\mu {\rm A}, I_{\rm E} = 0$	75		V
BV _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_{\rm E} = 10\mu A, I_{\rm C} = 0$	6.0		V
ICEX	Collector Cutoff Current	$V_{CE} = 60V, V_{EB(off)} = 3.0V$		10	nA
I _{CBO}	Collector Cutoff Current	$V_{CB} = 60V, I_E = 0$		0.01 10	μA
I _{EBO}	Emitter Cutoff Current	$V_{CB} = 60V, I_E = 0, T_a = 125^{\circ}C$ $V_{FB} = 3.0V, I_C = 0$		10	μA μA
I _{BL}	Base Cutoff Current	$V_{CE} = 60V, V_{EB(off)} = 3.0V$		20	μA
On Characte	eristics				
h _{FE}	DC Current Gain	I _C = 0.1mA, V _{CE} = 10V	35		
		$I_{C} = 1.0 \text{mA}, V_{CE} = 10 \text{V}$	50		
		$I_{C} = 10 \text{mA}, V_{CE} = 10 \text{V}$	75		
		$I_{C} = 10 \text{mA}, V_{CF} = 10 \text{V}, T_{a} = -55^{\circ}\text{C}$	35		
		$I_{C} = 150 \text{mA}, V_{CF} = 10 \text{V}^{*}$	100	300	
		$I_{C} = 150 \text{mA}, V_{CE} = 10 \text{V}^{*}$	50		
		$I_{C} = 500 \text{mA}, V_{CE} = 10 \text{V}^{*}$	40		
V _{CE(sat)}	Collector-Emitter Saturation Voltage *	$I_{\rm C} = 150 {\rm mA}, V_{\rm CE} = 10 {\rm V}$		0.3	V
02(000)		$I_{C} = 500 \text{mA}, V_{CE} = 10 \text{V}$		1.0	V
V _{BE(sat)}	Base-Emitter Saturation Voltage *	I _C = 150mA, V _{CE} = 10V	0.6	1.2	V
		$I_{C} = 500 \text{mA}, V_{CF} = 10 \text{V}$		2.0	V

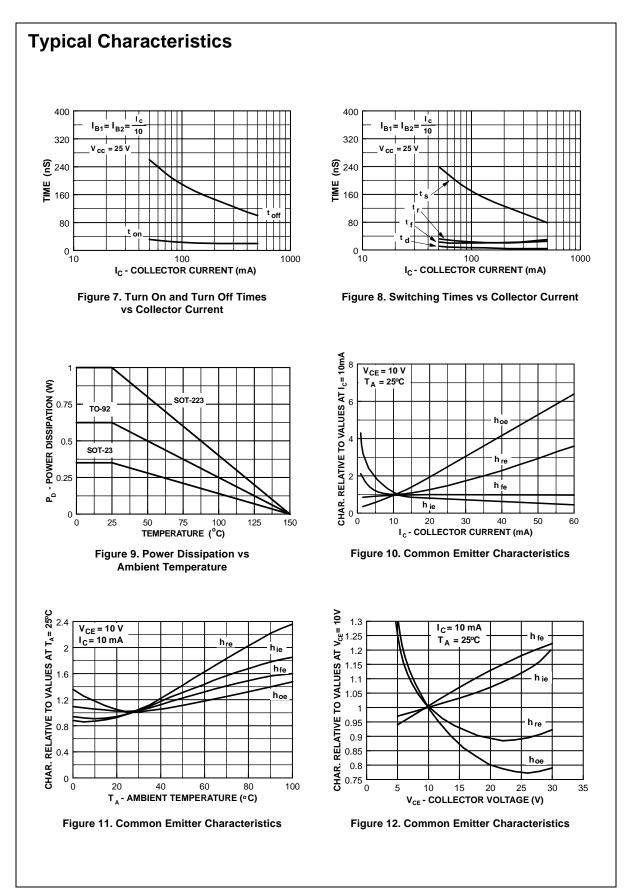
©2004 Fairchild Semiconductor Corporation

Electrical Characteristics Ta=25°C unless otherwise noted (Continued) Symbol Parameter **Test Condition** Min. Max. Units **Small Signal Characteristics** Current Gain Bandwidth Product $I_{C} = 20mA, V_{CE} = 20V, f = 100MHz$ 300 MHz f_T C_{obo} **Output Capacitance** $V_{CB} = 10V, I_E = 0, f = 1MHz$ 8.0 pF $V_{EB} = 0.5V, I_{C} = 0, f = 1MHz$ C_{ibo} Input Capacitance 25 pF rb'C_c Collector Base Time Constant $I_{C} = 20mA, V_{CB} = 20V, f = 31.8MHz$ 150 pS dB NF Noise Figure $I_{C} = 100 \mu A, V_{CE} = 10V,$ 4.0 $R_{S} = 1.0 K\Omega$, f = 1.0 KHz Re(h_{ie}) Real Part of Common-Emitter $I_{C} = 20 \text{mA}, V_{CE} = 20 \text{V}, f = 300 \text{MHz}$ 60 Ω High Frequency Input Impedance **Switching Characteristics** $V_{CC} = 30V, V_{EB(off)} = 0.5V,$ $I_{C} = 150mA, I_{B1} = 15mA$ Delay Time 10 ns td **Rise Time** 25 tr ns Storage Time $V_{CC} = 30V, I_C = 150mA,$ 225 ts ns $I_{B1} = I_{B2} = 15 \text{mA}$ Fall Time 60 t_f ns

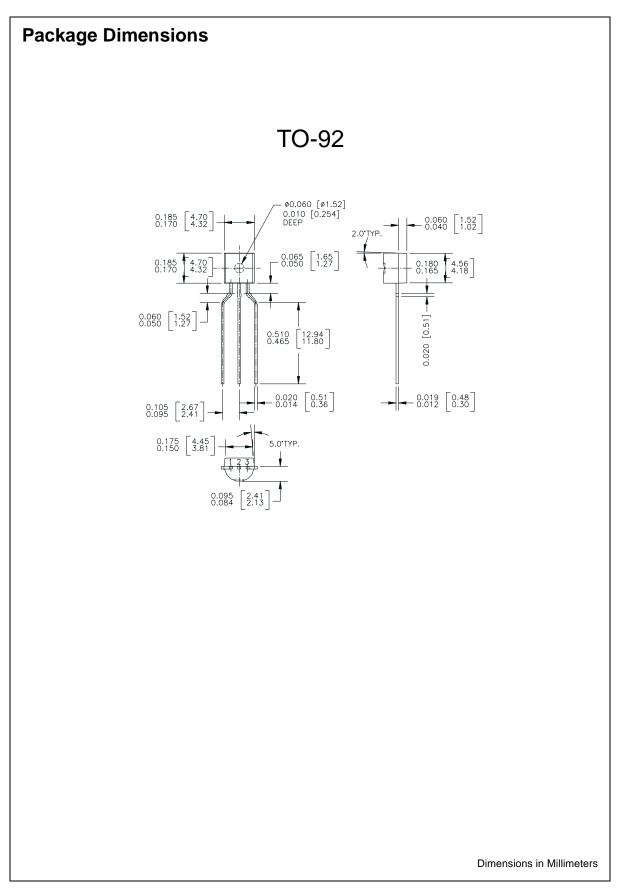

Thermal Characteristics T_a=25°C unless otherwise noted

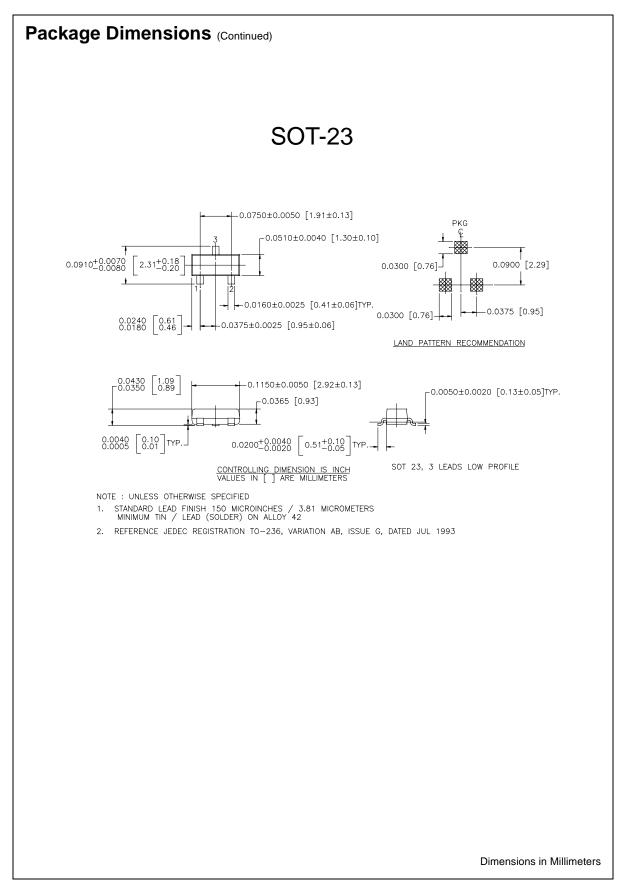
Symbol	Parameter	Max.			Linita	
		PN2222A	*MMBT2222A	**PZT2222A	Units	
P _D	Total Device Dissipation Derate above 25°C	625 5.0	350 2.8	1,000 8.0	mW mW/°C	
$R_{\theta JC}$	Thermal Resistance, Junction to Case	83.3			°C/W	
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	200	357	125	°C/W	

* Device mounted on FR-4 PCB 1.6" × 1.6" × 0.06".
** Device mounted on FR-4 PCB 36mm × 18mm × 1.5mm; mounting pad for the collector lead min. 6cm².

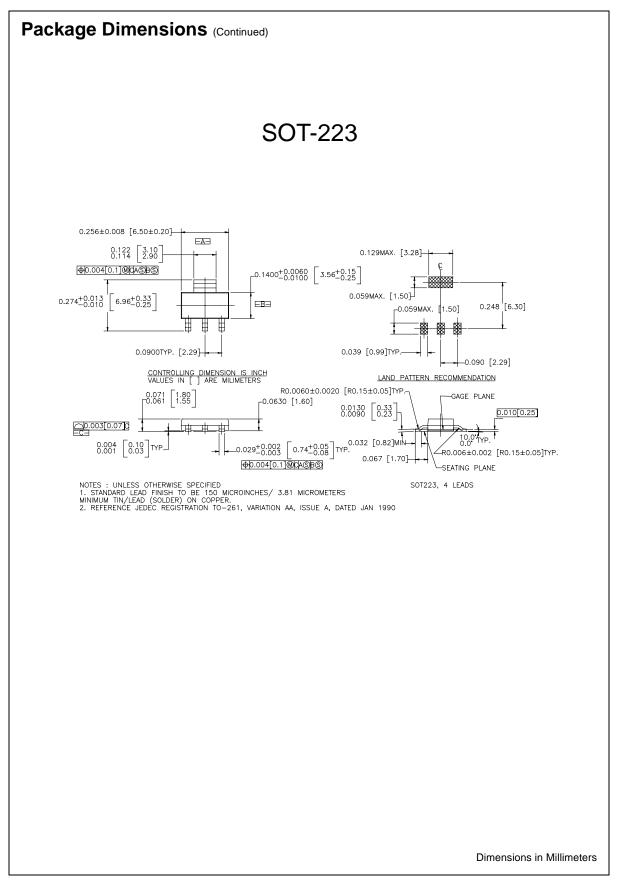

Spice Model

NPN (Is = 14.34f Xti = 3 Eg = 1.11 Vaf = 74.03 Bf = 255.9 Ne = 1.307 Ise = 14.34 Ikf = .2847 Xtb = 1.5 Br = 6.092 Isc = 0 lkr = 0 Rc = 1 Cjc = 7.306p Mjc = .3416 Vjc = .75 Fc = .5 Cje = 22.01p Mje = .377 Vje = .75 Tr = 46.91n Tf = 411.1p ltf = .6 Vtf = 1.7 Xtf = 3 Rb = 10)




©2004 Fairchild Semiconductor Corporation

Rev. A1, August 2004



©2004 Fairchild Semiconductor Corporation

©2002 Fairchild Semiconductor Corporation

©2002 Fairchild Semiconductor Corporation

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FAST [®]	ISOPLANAR™	Power247™	SuperFET™
ActiveArray™	FASTr™	LittleFET™	PowerSaver™	SuperSOT™-3
Bottomless™	FPS™	MICROCOUPLER™	PowerTrench [®]	SuperSOT™-6
CoolFET™	FRFET™	MicroFET™	QFET [®]	SuperSOT™-8
CROSSVOLT™	GlobalOptoisolator™	MicroPak™	QS™	SyncFET™
DOME™	GTO™	MICROWIRE™	QT Optoelectronics™	TinyLogic [®]
EcoSPARK™	HiSeC™	MSX™	Quiet Series™	TINYOPTO™
E ² CMOS™	I ² C™	MSXPro™	RapidConfigure™	TruTranslation™
EnSigna™	<i>i-Lo</i> ™	OCX™	RapidConnect™	UHC™
FACT™	ImpliedDisconnect™	OCXPro™	µSerDes™	UltraFET [®]
FACT Quiet Series [⊤]	M	OPTOLOGIC®	SILENT SWITCHER [®]	VCX™
Across the board. Around the world.™		OPTOPLANAR™	SMART START™	
The Power Franchise [®]		PACMAN™	SPM™	
Programmable Activ		POP™	Stealth™	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.