

4-BIT SHIFT REGISTER

The SN54/74LS95B is a 4-Bit Shift Register with serial and parallel synchronous operating modes. The serial shift right and parallel load are activated by separate clock inputs which are selected by a mode control input. The data is transferred from the serial or parallel D inputs to the Q outputs synchronous with the HIGH to LOW transition of the appropriate clock input.

The LS95B is fabricated with the Schottky barrier diode process for high speed and is completely compatible with all Motorola TTL families.

- Synchronous, Expandable Shift Right
- Synchronous Shift Left Capability
- Synchronous Parallel Load
- · Separate Shift and Load Clock Inputs
- Input Clamp Diodes Limit High Speed Termination Effects

NOTE: The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

LOADING (Note a)

V_{CC} = PIN 14 GND = PIN 7

4-BIT SHIFT REGISTER LOW POWER SCHOTTKY							
14 1	J SUFFIX CERAMIC CASE 632-08						
14	N SUFFIX PLASTIC CASE 646-06						
14 Bettered	D SUFFIX SOIC CASE 751A-02						
ORDERING IN	FORMATION						
SN54LSXXJ SN74LSXXN SN74LSXXD							

PIN NAMES

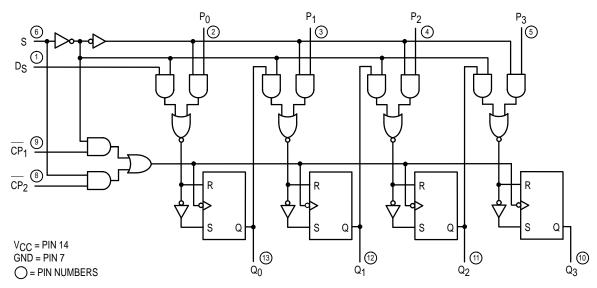
		HIGH	LOW
S	Mode Control Input	0.5 U.L.	0.25 U.L.
DS	Serial Data Input	0.5 U.L.	0.25 U.L.
<u>Po</u> -P3	Parallel Data Inputs	0.5 U.L.	0.25 U.L.
<u>CP1</u>	Serial Clock (Active LOW Going Edge) Input	0.5 U.L.	0.25 U.L.
CP ₂	Parallel Clock (Active LOW Going Edge) Input	0.5 U.L.	0.25 U.L.
$Q_0 - Q_3$	Parallel Outputs (Note b)	10 U.L.	5 (2.5) U.L.

NOTES:

a. 1 TTL Unit Load (U.L.) = 40 μ A HIGH/1.6 mA LOW.

b. The Output LOW drive factor is 2.5 U.L. for Military (54) and 5 U.L. for Commercial (74) Temperature Ranges.

GUARANTEED OPERATING RANGES


Symbol	Parameter		Min	Тур	Max	Unit
VCC	Supply Voltage	54 74	4.5 4.75	5.0 5.0	5.5 5.25	V
Т _А	Operating Ambient Temperature Range	54 74	-55 0	25 25	125 70	°C
ЮН	Output Current — High	54, 74			-0.4	mA
IOL	Output Current — Low	54 74			4.0 8.0	mA

SN54/74LS95B

FAST AND LS TTL DATA

SN54/74LS95B

LOGIC DIAGRAM

FUNCTIONAL DESCRIPTION

The LS95B is a 4-Bit Shift Register with serial and parallel synchronous operating modes. It has a Serial (D_S) and four Parallel (P₀-P₃) Data inputs and four Parallel Data outputs (Q₀-Q₃). The serial or parallel mode of operation is <u>con</u>trolled by a Mode Control input (S) and two Clock Inputs (CP₁) and (CP₂). The serial (right-shift) or parallel data transfers occur synchronous with the HIGH to LOW transition of the selected clock input.

When the Mode Control input (S) is HIGH, CP₂ is enabled. A HIGH to LOW transition on enabled CP₂ transfers parallel data from the P_0-P_3 inputs to the Q_0-Q_3 outputs.

When the Mode Control input (S) is LOW, CP1 is enabled. A

HIGH to LOW transition on enabled \overline{CP}_1 transfers the data from Serial input (D_S) to Q₀ and shifts the data in Q₀ to Q₁, Q₁ to Q₂, and Q₂ to Q₃ respectively (right-shift). A left-shift is accomplished by externally connecting Q₃ to P₂, Q₂ to P₁, and Q₁ to P₀, and operating the LS95B in the parallel mode (S = HIGH).

For normal operation, S should only change states when both Clock inputs are LOW. However, changing S from LOW to HIGH while CP₂ is HIGH, or changing S from HIGH to LOW while CP₁ is HIGH and CP₂ is LOW will not cause any changes on the register outputs.

OPERATING MODE		I	NPUTS	OUTPUTS					
OPERATING MODE	S	CP ₁	CP ₂	DS	Pn	Q ₀	Q ₁	Q ₂	Q3
Shift	L	ب ب	X X	l h	X X	L H	90 90	91 91	92 92
Parallel Load	Н	Х	l	Х	Pn	P ₀	P1	P2	P ₃
Mode Change	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			× × × × × × × × × ×	× × × × × × × × × ×		No Cł No Cł Undete Undete No Cł Undete	nange nange ermined ermined nange ermined nange	

L = LOW Voltage Level

H = HIGH Voltage Level

X = Don't Care

I = LOW Voltage Level one set-up time prior to the HIGH to LOW clock transition.

h = HIGH Voltage Level one set-up time prior to the HIGH to LOW clock transition.

P_n = Lower case letters indicate the state of the referenced input (or output) one set-up time prior to the HIGH to LOW clock transition.

SN54/74LS95B

			Limits						
Symbol	Parameter		Min	Тур	Max	Unit	Test Co	onditions	
VIH	Input HIGH Voltage		2.0			V	Guaranteed Input HIGH Voltage for All Inputs		
Ma		54			0.7	V	Guaranteed Input	LOW Voltage for	
VIL	Input LOW Voltage	74			0.8	V	All Inputs		
VIK	Input Clamp Diode Voltage			-0.65	-1.5	V	$V_{CC} = MIN, I_{IN} =$	–18 mA	
Maria		54	2.5	3.5		V	V _{CC} = MIN, I _{OH} :	= MAX, VIN = VIH	
VOH	Output HIGH Voltage	74	2.7	3.5		V	or V _{IL} per Truth T	able	
Max		54, 74		0.25	0.4	V	$I_{OL} = 4.0 \text{ mA}$ $V_{CC} = V_{CC}$		
VOL	Output LOW Voltage	74		0.35	0.5	V	I _{OL} = 8.0 mA	VIN = VIL or VIH per Truth Table	
l					20	μΑ	V _{CC} = MAX, V _{IN} = 2.7 V		
lΗ	Input HIGH Current				0.1	mA	V _{CC} = MAX, V _{IN} = 7.0 V		
۱ _{IL}	Input HIGH Current				-0.4	mA	$V_{CC} = MAX, V_{IN} = 0.4 V$		
IOS	Short Circuit Current (Note 1)		-20		-100	mA	V _{CC} = MAX		
ICC	Power Supply Current				21	mA	V _{CC} = MAX		

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.

AC CHARACTERISTICS (T_A = 25°C, V_{CC} = 5.0 V)

		Limits				
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
fMAX	Maximum Clock Frequency	25	36		MHz	
^t PLH	CP to Output		18	27	ns	V _{CC} = 5.0 V ^C L = 15 pF
^t PHL			21	32	ns	2 - 10 pi

AC SETUP REQUIREMENTS (T_A = 25°C, V_{CC} = 5.0 V)

		Limits				
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
tW	CP Pulse Width	20			ns	
t _S	Data Setup Time	20			ns	
^t h	Data Hold Time	20			ns	$V_{CC} = 5.0 V$
t _S	Mode Control Setup Time	20			ns	
t _h	Mode Control Hold Time	20			ns	

SN54/74LS95B

DESCRIPTION OF TERMS

SETUP TIME(ts) —is defined as the minimum time required for the correct logic level to be present at the logic input prior to the clock transition from HIGH to LOW in order to be recognized and transferred to the outputs.

HOLD TIME (th) — is defined as the minimum time following

the clock transition from HIGH to LOW that the logic level must be maintained at the input in order to ensure continued recognition. A negative HOLD TIME indicates that the correct logic level may be released prior to the clock transition from HIGH to LOW and still be recognized.

AC WAVEFORMS

The shaded areas indicate when the input is permitted to change for predictable output performance.

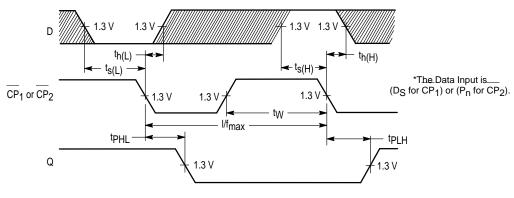


Figure 1

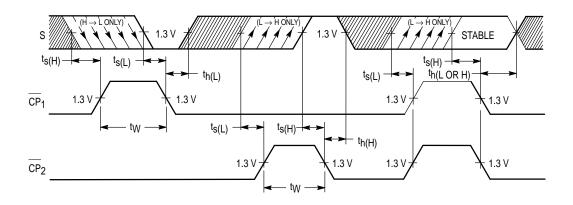


Figure 2