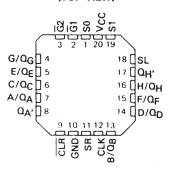
- Multiplexed Inputs/Outputs Provide Improved Bit Density
- Four Modes of Operations:

Hold (Store)

Shift Left


Shift Right Load Data

- Operates with Outputs Enabled or at High Z
- 3-State Outputs Drive Bus Lines Directly
- Can Be Cascaded for N-Bit Word Lengths
- SN54LS323 and SN74LS323 Are Similar But Have Synchronous Clear
- Applications:

Stacked or Push-Down Registers Buffer Storage, and Accumulator Registers

	GUARANTEED	TYPICAL
TYPE	SHIFT (CLOCK)	POWER
	FREQUENCY	DISSIPATION
'LS299	25 MHz	175 mW
'S299	50 MHz	700 mW

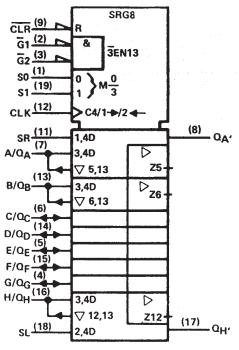
SN54LS299, SN54S299 . . . FK PACKAGE (TOP VIEW)

description

These Schottky TTL eight-bit universal registers feature multiplexed inputs/outputs to achieve full eight-bit data handling in a single 20-pin package. Two function-select inputs and two output-control inputs can be used to choose the modes of operation listed in the function table.

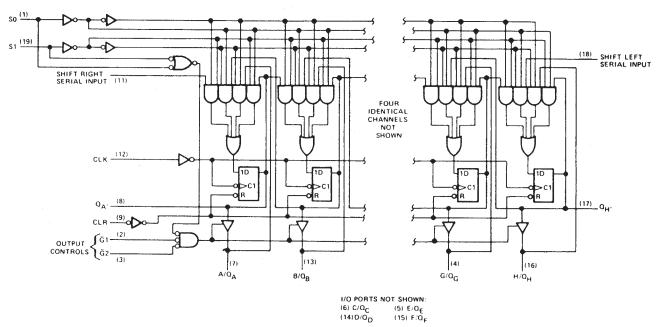
Synchronous parallel loading is accomplished by taking both function-select lines, S0 and S1, high. This places the three-state outputs in a high-impedance state, which permits data that is applied on the input/output lines to be clocked into the register. Reading out of the register can be accomplished while the outputs are enabled in any mode. A direct overriding input is provided to clear the register whether the outputs are enabled or off.

FUNCTION TABLE


				INPL	JTS						IN	PUTS/0	DUTPU	TS			OUT	PUTS
MODE	CLR	FUNC	CTION		TPUT TROL	CLK	SEF	RIAL	A/Q _A	B/QB	c/Q _C	D/QD	E/QE	F/Q _F	G/QG	H/QH	Q _A ,	Q _H
		S1	S0	Ğ1 [†]	G2 [†]		SL	SR		_	-	_		•	•			
	L	Х	L	L	L	×	Х	х	L	L	L	L	L	L	L	L	L	,L
Clear	L	L.	Х	L	L	×	X	X	L	L	L	L	L	L	L	L.	L	L
	L	Н	н	х	Х	×	x	X	×	X	×	×	X	X	X	×	L	L
Hold	Н	L	L	L	^L	×	×	×	QAO	Ово	Q _{C0}	Q _{D0}	QEO	Q _{F0}	Q _{G0}	ано	QAO	Оно
noio	н	×	×	L	L	Ł	×	×	QAO	Q _{BO}	σ_{C0}	a_{D0}	σ_{E0}	Q_{F0}	α_{G0}		QAO	QHO
Shift Right	Н	L	Н	L	L	t	X	Н	Н	QAn	QBn	Q _{Cn}	QDn	QEn	QFn	QGn	Н	a_{Gn}
Shirt right	н	L	н	L	L	1	×	L	L	Q_{An}	Q_{Bn}	a_{Cn}	a _{Dn}	α_{En}	Q_{En}	Q_{Gn}	L	a_{Gn}
Shift Left	Н	Н	L	L	L	1	Н	Х	QBn	QCn	QDn	QEn	QFn	QGn	QHn	Н	QBn	Н
Shift Left	н	H	L	L	L	1	L	×	QBn	a_{Cn}	a_{Dn}	α_{En}	Q_{Fn}	a_{Gn}	Q_{Hn}	L	QBn	L
Load	Н	Н	Н	Х	Х	1	Х	X	а	b.	С	d	е	f	g	h	а	h

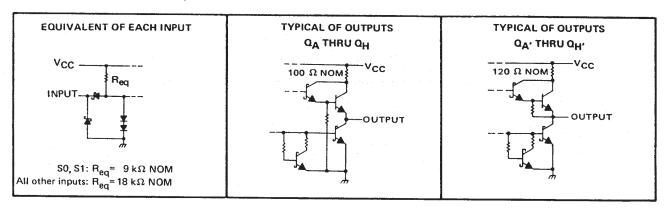
[†]When one or both output controls are high the eight input/output terminals are disabled to the high-impedance state; however, sequential operation or clearing of the register is not affected.

a...h = the level of the steady-state input at inputs A through H, respectively. These data are loaded into the flip-flops while the flip-flop outputs are isolated from the input/output terminals.



logic symbol†

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for DW, J, N, and W packages.


logic diagram (positive logic)

Pin numbers shown are for DW, J, N, and W packages.

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1) .																			7 \	1
Input voltage					٠.														7١	/
Off-state output voltage																		E	i.5 \	J
Operating free-air temperature range:	SN	541	LS2	99											-5	5°	C to) 12	25°(à
	SN	741	LS2	99												0	°C	to	70°(Ċ
Storage temperature															-6	5°	C to) 1 <u>!</u>	50°(C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

		s	N54LS2	99	s	l <u> </u>		
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, VCC		4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH	QA thru QH			-1			-2.6	
The state of the s	Q _A ' or Q _H '			0.4			-0.4	mA
Low-level output current, IOL	QA thru QH			12			24	
	Q _A ' or Q _H '			4			8	mA
Clock frequency, fclock		0		20	0		20	MHz
Width of clock pulse, tw(clock)	Clock high	30			30			
	Clock low	1.8			10			ns
Width of clear pulse, tw(clear)	Clear low	25			20			ns
	Select	351			351			
Setup time, t _{SU}	High-level data [†]	201			201			
, <i>'</i> 50	Low-level data [†]	20↑			201			ns
	Clear inactive-state	241			201			
Hold time, th	Select	10↑			101			
	Data [†]	3†			01			ns
Operating free-air temperature, TA		-55		125	0		70	°C

[†] Data includes the two serial inputs and the eight input/output data lines.

SDLS156 - MARCH 1974 - REVISED MARCH 1988

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER		TEST COND	NTIONST	SI	N54LS2	299	SI	N74LS2	99	UNIT
	TANAMETER		TEST CONE	ATTONS.	MIN	TYP‡	MAX	MIN	TYP [‡]	MAX	UNIT
VIH	High-level input voltage				2			2			V
VIL	Low-level input voltage						0.7			8.0	V
VIK	Input clamp voltage		V _{CC} = MIN,	I _I = -18 mA			-1.5			-1.5	V
VoH	High-level output voltage	Q _A thru Q _H	V _{CC} = MIN,	V _{IH} = 2 V,	2.4	3.2		2.4	3.1		V
VOH	riigiinevei output voitage	QA' or QH'	VIL = VILmax,	IOH = MAX	2.5	3.4		2.7	3.4		1 °
		Q _A thru Q _H	VCC = MIN,	I _{OL} = 12 mA		0.25	0.4		0.25	0.4	
VOL	Low-level output voltage	CA till CH	V _{IH} = 2 V,	I _{OL} = 24 mA					0.35	0.5	l v
٠٥٤	Low level output voltage	QA' or QH'	VIH = 2 V,	IOL = 4 mA		0.25	0.4		0.25	0.4	1 *
		-д от -н	ALE ALFUIDA	IOL = 8 mA					0.35	0.5	1
lozh	Off-state output current,	QA thru QH	V _{CC} = MAX,	$V_{IH} = 2 V$,			40			40	μА
.О2п	high-level voltage applied	-д ина сн	V _O = 2.7 V				40				μ.
¹ OZL	Off-state output current,	Q _A thru Q _H	V _{CC} = MAX,	$V_{IH} = 2 V$,			400			-400	μА
-02L	low-level voltage applied		V _O = 0.4 V				400			- 400	μ
	Input current at maximum	S0, S1		V1 = 7 V			200			200	
11	input voltage	A thru H	V _{CC} = MAX	V ₁ = 5.5 V			100			100	μΑ
	put vortugo	Any other		V ₁ = 7 V			100			100]
ħн	High-level input current	A thru H, SO, S1	Vcc = MAX,	V ₁ = 2.7 V			40			40	μА
'IH	riigii-iever input current	Any other	VCC - MAX,	V1 - 2.7 V			20			20	1 44
IIL	Low-level input current	S0, S1	V _{CC} = MAX,	V ₁ = 0.4 V			-0.8			-0.8	
'1L	COVV-level input current	Any other	ACC - MAY	V - 0.4 V			-0.4			-0.4	mA
loc	Short-circuit output current §	Q _A thru Q _H	\/=== MAAY		-30		130	-30		-130	
los	Short-circuit output current	QA' or QH'	V _{CC} = MAX		-20	*****	-100	-20		-100	mA
Icc	Supply current		V _{CC} = MAX			33	53		33	53	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ} \text{C}$

PARAMETER¶	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _{max}			See Note 2	20	35		MHz
[†] PLH	CLV	0.4000.4	B. = 2 kO		22	33	
^t PHL	CLK	Q _A ' or Q _H '	$R_L = 2 k\Omega$, $C_L = 15 pF$		26	39	ns
^t PHL	CLR	QA' or QH'	1		27	40	ns
^t PLH		Q _A thru Q _H	$R_1 = 665 \Omega$, $C_1 = 45 pF$		17	25	
[†] PHL	CLK	da illia da			26	39	ns
^t PHL	CLR	Q _A thru Q _H	1 11 000 12, 00 10 10		26	40	ns
^t PZH	G1, G2	QA thru QH	7		13	21	
^t PZL	01,02	α _A tina α _H			19	30	ns
^t PHZ	G1, G2	QA thru QH	$R_L = 665 \Omega$, $C_L = 5 pF$		10	20	
^t PLZ] . 31, 32	ZA UITO CH			10	15	ns

 $[\]P_{\mathsf{fmax}} \equiv \mathsf{maximum} \; \mathsf{clock} \; \mathsf{frequency}$

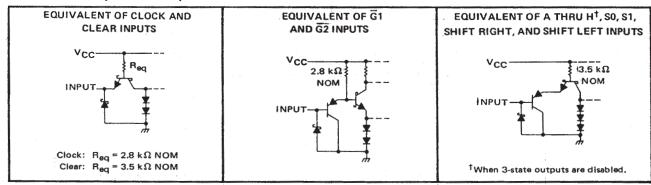
 $^{^{\}ddagger}$ All typical values are at $V_{CC} = 5 \text{ V}$, $T_{A} = 25^{\circ}$ C.

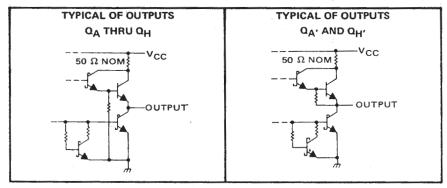
[§]Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second.

tplH = propagation delay time, low-to-high-level output.

tpHL = propagation delay time, high-to-low-level output

 $t_{PZH} = output$ enable time to high level


 $t_{PZL} \equiv output$ enable time to low level


tpHZ ≡ output disable time from high level

 $t_{PLZ} \equiv output disable time from low level$

NOTE 2: For testing f_{max}, all outputs are loaded simultaneously, each with C_L and R_L as specified for the propagation times, Load circuits and voltage waveforms are shown in Section 1.

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)
Input voltage
Off-state output voltage
Operating free-air temperature range: SN54S299 (See Note 1)55°C to 125°C
SN74S299 0 °C to 70 °C
Storage temperature range65°C to 150°C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

			N54S29	9		N74S29	9	
		MIN	NOM	MAX	MIN	NOM	MAX	TINU
Supply voltage, V _{CC}		4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH	Q _A thru Q _H			-2			-6.5	- A
riigii-iever output current, 10H	QA' or QH'			-0.5			-0.5	mA
Low-level output current, IOL	Q _A thru Q _H			20			20	mA
	QA' or QH'			6			6	I IIIA
Clock frequency, fclock		0		50	0		50	MHz
Width of clock pulse, tw(clock)	Clock high	10			10			
	Clock low	10			10			ns
Width of clear pulse, tw(clear)	Clear low	10			10			ns
	Select	15↑			15↑			
Setup time, t _{SU}	High-level data [‡]	7↑			7↑			
Setup time, tsu	Low-level data [‡]	5↑			5↑			ns
	Clear inactive-state	10↑			101			
Hold time, th	Select	5↑			51			
Tiold time, th	Data [‡]	5↑			5↑			ns
Operating free-air temperature, TA		-55		125	0		70	°C

[‡] Data includes the two serial inputs and the eight input/output data lines.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER		TEST CON	DITIONS	MIN	TYP‡	MAX	UNIT
VIH	High-level input voltage				2			V
VIL	Low-level input voltage						0.8	V
VIK	Input clamp voltage		V _{CC} = MIN,	I _I = -18 mA			-1.2	V
VOH	High-level output voltage	Q _A thru Q _H	VCC = MIN,	V _{IH} = 2 V,	2.4	3.2		
TOH		QA' or QH'	VIL = 0.8 V,	IOH = MAX	2.7	3.4		٧
VOL	Low-level output voltage		VCC = MIN,	V _{IH} = 2 V,				
• OL			V _{IL} = 0.8 V,	IOL = MAX			0.5	٧
lozh	Off-state output current,	0 4 0	V _{CC} = MAX,	V _{IH} = 2 V,				
10ZH	high-level voltage applied	QA thru QH	V _O = 2.4 V				100	μА
¹ OZL	Off-state output current,		V _{CC} = MAX,	V _{IH} = 2 V,				
102L	low-level voltage applied	QA thru QH	V _O = 0.5 V				-250	μА
11	Input current at maximum input voltage		V _{CC} = MAX,	V _I = 5.5 V			1	mA
ЧН	High-level input current	A thru H, SO, S1					100	11174
-111		Any other	V _{CC} = MAX,	V ₁ = 2.7 V			50	μА
		CLK or CLR					-2	mA
HL	Low-level input current	S0, S1	VCC = MAX,	V ₁ = 0.5 V			-500	μΑ
		Any other		·			250	μА
los	Short-circuit output current§	Ω _A thru Q _H			-40		-100	
.08	Short-circuit datput currents	QA' or QH'	V _{CC} = MAX		-20		-100	mA
lcc	Supply current		V _{CC} = MAX			140	225	mA

 $^{^\}dagger$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ} \text{ C}$

PARAMETER¶	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _{max}			See Note 2	50	70		MHz
^t PLH	CLK	0.4050.4	D 140 C - 15 . 5		12	20	
^t PHL		Q _A ' or Q _H '	$R_{L} = 1 k\Omega$, $C_{L} = 15 pF$		13	20	ns
^t PHL	CLR	QA' or QH'			14	21	ns
^t PLH	CLK	0.450			15	21	
^t PHL		QA thru QH			15	21	ns
tPHL	CLR	QA thru QH	R_{L} = 280 Ω, C_{L} = 45 pF		16	24	ns
^t PZH	G1, G2	0 4 0	1		10	18	-
[†] PZL	G1, G2	QA thru QH			12	18	ns
^t PHZ	Ğ1, Ğ2		$R_1 = 280 \Omega$, $C_1 = 5 pF$	 	7	12	
^t PLZ	31,62	• QA thru QH			7	12	ns

NOTE 2: For testing f_{max} , all outputs are loaded simultaneously, each with C_L and R_L as specified for the propagation times. Load circuits and voltage waveforms are shown in Section 1.

[‡]All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25 ^{\circ} \text{C}$.

[§] Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second.

[¶]f_{max} = maximum clock frequency t_{PLH} = Propagation delay time, low-to-high-level output

tpHL = Propagation delay time, high-to-low-level output

tpzH = output enable time to high level

tpzL = output enable time to low level

tpHZ = output disable time from high level

tpLZ = output disable time from low level

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated