Physics

David Boness, PhD, Chair

Objectives

The Physics Department offers two degree programs, the bachelor of science (BS) and the bachelor of arts (BA). There are two versions of the BA program: the bachelor of arts with a major in physics, and the bachelor of arts with a major in physics and with a specialization in humanities for teaching (BAHT program).

For those who wish a career in physics, the bachelor of science in physics program takes the student from classical mechanics through quantum mechanics, including advanced laboratory work emphasizing modern physics. The curriculum is designed to prepare students for advanced work in pure and applied physics in graduate school or in industry, but the degree is also excellent preparation for careers in engineering or computer programming, or for admission to medical, dental, law, or business school. Graduates with the BS degree in physics work in industry, federally funded national laboratories, academic institutions, or other places where a strong problem solving background is valued.

The bachelor of arts program is ideal for those who desire a solid background in physics but who also want the flexibility to pursue other interests. Students planning to go on to teach at the high school level can enter teacher certification and master degree programs in education regardless of which physics degree is earned, but the BAHT program is specially designed for physics majors seeking a career in high school teaching. Note that the BAHT program does not by itself give state teacher certification; further work is needed.

Degrees Offered

Bachelor of Arts Bachelor of Science in Physics

Majors Offered

Physics Physics with specialization in Humanities for Teaching

Minor Offered

Physics

Bachelor of Arts Major in Physics

In order to earn the bachelor of arts degree with a major in physics, students must complete a minimum of 180 credits with a cumulative and major/department grade point average of 2.00, including the following:

I. Core Curriculum Requirements

ENGL 110	College Writing: Inquiry and Argument	5
PHIL 110	Introduction to Philosophy and Critical Thinking	5
Choose one of the follo	wing two courses:	5
HIST 120	Origins of Western Civilization	
HIST 121	Studies in Modern Civilization	

ENGL 120	Introduction to Literature	5
Fine Arts (one approv	/ed 5 credit course; see course descriptions)	5
PHIL 220	Philosophy of the Human Person	5
Social Science I		5
Social Science II (diff	erent discipline from Social Science I)	5
Theology and Religio	us Studies Phase II (200-299)	5
Ethics (upper division	1)	5
Theology and Religio	us Studies Phase III (300-399)	5
Interdisciplinary	3 to	5
Senior Synthesis		3

II. Major Requirements

45 credits in phys	sics, including:	
PHYS 121	Mechanics	5
PHYS 122	Electricity and Magnetism	5
PHYS 123	Waves and Optics	5
PHYS 204	Relativity	2
PHYS 205	Introduction to Quantum Physics	3
PHYS 206	Modern Physics Laboratory	3
PHYS 230	Computing Tools for Physical Science	3
PHYS 250	Mathematical Methods for Physics	4
PHYS 310	Classical Mechanics	5
PHYS 330	Electromagnetic Field Theory	5
PHYS	Electives (300 level or above)	5

III. Other Major Department Requirements

MATH 134	Calculus I	5
MATH 135	Calculus II	5
MATH 136	Calculus III	5
MATH 232	Multivariable Calculus	3
MATH 233	Linear Algebra	3
MATH 234	Differential Equations	4
Related science ele	ctives (approved by department)	15

NOTE: No physics courses numbered 120 or below may be counted toward the major.

Bachelor of Arts Major in Physics Specialization in Humanities for Teaching

In order to earn the bachelor of arts degree with a major in physics and with a specialization in humanities for teaching, students must complete a minimum of 180 credits with a cumulative grade point average of 2.50, and major/department grade point average of 2.00, including the following:

I. Core Curriculum Requirements

HUMT 150	Composition: Language and Thought	5
HUMT 151	Composition: Language and the Arts	5
HUMT 152	Logic, Ethics, and Discernment	5
HUMT 161	Humanities: Introduction to Tutoring	2
HUMT 162	Humanities: Introduction to Tutoring	1

HUMT 163	Humanities: Introduction to Tutoring	1
HUMT 171	Proseminar: Humanistic Foundations of Education	5
HUMT 180	Socio-Cultural Transformations I	5
HUMT 181	Socio-Cultural Transformations II	5
HUMT 182	Socio-Cultural Transformations III	5
HUMT 273	Seminar on Secondary Education	5
HUMT 274	Supervised Internship in Secondary Education	5
HUMT 301	Perspectives on the Person I	5
HUMT 302	Perspectives on the Person II	5
HUMT 371	Education and the Polity	5
HUMT 372	Leadership and Teaching	5
HUMT 380	Cultural Interface	5
HUMT 400	Seminar on Contemporary Problems	5
HUMT 471	Jesuit Education	5
HUMT 472	Jesuit Education Practicum	5
CISS 120	Poverty in America	5

II. Major Requirements

48 credits in physics, including:		
PHYS 121	Mechanics	5
PHYS 122	Electricity and Magnetism	5
PHYS 123	Waves and Optics	5
PHYS 204	Relativity	2
PHYS 205	Introduction to Quantum Physics	3
PHYS 206	Modern Physics Laboratory	3
PHYS 230	Computing Tools for Physical Science	3
PHYS 250	Mathematical Methods for Physics	4
PHYS 310	Classical Mechanics	5
PHYS 330	Electromagnetic Field Theory	5
PHYS 487	Senior Synthesis	3
PHYS	Electives (300 level or above)	5

III. Other Major Department Requirements

MATH 134	Calculus I	5
MATH 135	Calculus II	5
MATH 136	Calculus III	5
MATH 232	Multivariable Calculus	3
MATH 233	Linear Algebra	3
MATH 234	Differential Equations	4
CHEM 121	General Chemistry I	4
CHEM 131	General Chemistry Lab I	1
CHEM 260	Laboratory Safety	2
Related Science Elect	tives (approved by department)	8

NOTE: For a secondary endorsement in general science, 5 credits of earth science and 5 credits of BIOL 161/171 will satisfy science electives. For a detailed description of this degree see the introductory pages for the College of Science and Engineering. Students interested in teaching should contact the Master in Teaching program (206) 296-5759 or visit the website *seattleu.edu/coe/mit*.

Bachelor of Science in Physics

In order to earn the bachelor of science in physics degree, students must complete a minimum of 180 credits with a cumulative and major/department grade point average of 2.00, including the following:

I. Core Curriculum Requirements

ENGL 110 PHIL 110	College Writing: Inquiry and Argument	
Choose one of the follo	wing two courses:	
HIST 120	Origins of Western Civilization	
HIST 121	Studies in Modern Civilization	
ENGL 120	Introduction to Literature	
Fine Arts (one approv	Fine Arts (one approved 5 credit course; see course descriptions)	
PHIL 220	Philosophy of the Human Person5	
Social Science I		
Social Science II (diff	erent discipline from Social Science I)5	
Theology and Religio	us Studies Phase II (200-299)5	
Ethics (upper division	n)5	
Theology and Religious Studies Phase III (300-399)		
Interdisciplinary		
Senior Synthesis		

II. Major Requirements

65 credits in physics, including:

	-	
PHYS 121	Mechanics	5
PHYS 122	Electricity and Magnetism	5
PHYS 123	Waves and Optics	5
PHYS 203	Thermodynamics	3
PHYS 204	Relativity	2
PHYS 205	Introduction to Quantum Physics	3
PHYS 206	Modern Physics Laboratory	3
PHYS 230	Computing Tools for Physical Science	3
PHYS 250	Mathematical Methods for Physics	4
PHYS 310	Classical Mechanics	5
PHYS 330	Electromagnetic Field Theory	5
PHYS 370	Advanced Physics Laboratory	4
PHYS 385	Quantum Mechanics	5
PHYS 410	Advanced Classical Physics	5
PHYS	Electives (300 level or above)	8
III. Other Major De	epartment Requirements	
MATH 134	Calculus I	5
MATH 135	Calculus II	5
MATH 136	Calculus III	5
MATH 232	Multivariable Calculus	3
MATH 233	Linear Algebra	3
MATH 234	Differential Equations	4
Related Science Elect	tives (approved by department)	5

NOTE: No physics courses numbered 120 or below may be counted toward the major.

Minor in Physics

In order to earn a mind	r in physics, students must complete 30 credits in physics, including:	
PHYS 121	Mechanics	5
PHYS 122	Electricity and Magnetism	5
PHYS 123	Waves and Optics	5
PHYS 205	Introduction to Quantum Physics	3
PHYS	Electives (200-level and above) 1	2

NOTE: No physics courses numbered 120 or below may be counted toward the minor.

See Policy for minors (84-1) for more information.

Physics Courses

NOTE: 1. PHYS 101, PHYS 102, PHYS 104, PHYS 105, PHYS 106, PHYS 107, PHYS 121, PHYS 122, and PHYS 123 combine lectures and discussion with laboratory sessions. Any of these satisfies the core Phase One laboratory science requirement. 2. Credit may be received for only one of the following series: PHYS 105/106/107 or PHYS 121/122/123.

PHYS 100From Quarks to the Cosmos2A non-mathematical introduction to some of the most interesting aspects of contemporary physics. Topicsinclude the nature of space and time, the fundamental constituents of matter, and the evolution of the universe from the big bang to the present epoch of accelerated expansion. Evaluation in the course is basedon class participation, essay exams, and a term paper. Grading is CR/F. There are no prerequisites. (fall)

PHYS 104Science as a Human Process5How science is actually done by real people; history of physics; concepts of relativity and quantum physics
and their effect on society; additional topics may include recent controversies in science, such as global
warming, ozone depletion, or what caused the death of the dinosaurs. Course includes laboratory compo-
nent. Prerequisite: core mathematics or placement in MATH 120 or higher.

 PHYS 105
 Mechanics
 5

 A non-calculus survey of classical mechanics. Topics covered include kinematics in one and two dimensions; dynamics, Newton's laws and gravitation; work and energy; momentum, rotational motion, and equilibrium. Course includes laboratory component. Prerequisites: MATH 120, 121, or equivalent.

PHYS 106Waves, Sound, Electricity and Magnetism5Continuation of the non-calculus survey of introductory physics. Topics covered include fluids; simple harmonic motion; mechanical waves and sound; electric charge, field, and potential; electric energy and capacitance; electric current and resistance; magnetic fields and electromagnetic induction. Course includes laboratory component. Prerequisite: PHYS 105. (winter)

PHYS 107Thermodynamics, Optics, and Modern Physics5Completion of the non-calculus survey of introductory physics. Topics treated include temperature and
kinetic theory; heat and the laws of thermodynamics; ray and wave optics; introduction to the ideas
of quantum mechanics; radioactivity and radiation. Course includes laboratory component. Prerequisite:
PHYS 106. (spring)

PHYS 121Mechanics5An introduction to calculus-based physics for students of science and engineering. Topics treated include
vectors; kinematics; force and Newton's laws; work, energy, and power; conservation of momentum and
collisions; rotational dynamics and rigid body motion; gravitation. Course includes laboratory component.
Prerequisite or co-requisite: MATH 135. (winter, spring)

PHYS 122Electricity and Magnetism5Continuation of calculus-based physics for students of science and engineering. Topics covered include
electric charge, forces, field, flux; Gauss' law; electric potential; conductors, dielectrics, capacitance; cur-
rent, resistance, and DC circuits; magnetic forces and fields; Ampere's law; Faraday's law and inductance;
Maxwell's equations. Course includes laboratory component. Prerequisites: PHYS 121, MATH 135. (fall,
spring)

 PHYS 205
 Introduction to Quantum Physics
 3

 An introduction to quantum mechanics for students of science and engineering. Topics covered include evidence for the quantization of light, matter, and energy; the wave nature of matter; the Bohr model of the atom; wave-particle duality; the uncertainty principle; the Schrödinger equation and its applications; the Pauli exclusion principle and the periodic table of the elements. Prerequisites: PHYS 123, MATH 232. (spring)

PHYS 206Modern Physics Laboratory3A rigorous introduction to experimental physics through modern physics laboratory investigations. Emphasis is on experimental method, including experimental design, proper use of laboratory notebooks and
record keeping, data acquisition, data analysis and interpretation, measurement statistics and uncertainty,
quantitative support of conclusions, and presentation and dissemination of results. Physics topics for investigation emphasize 20th century physics. Prerequisite or co-requisite: PHYS 205. (spring)

PHYS 250Mathematical Methods for Physics4A course to facilitate the understanding and use of mathematics in the physical sciences. Topics include
applications of vector calculus; Fourier analysis; applications of differential equations; coordinate systems;
special functions. Prerequisites: PHYS 123, MATH 234. (fall)

PHYS 291-293	Special Topics1 to 5
PHYS 296	Directed Study 1 to 5
PHYS 310	Classical Mechanics
Newtonian mechanics	for students of physics. Topics include point-particle mechanics in 3-dimensions;
oscillations; Newton's	theory of gravitation; central force motion; dynamics of systems of particles; La-
grangian and Hamilton	nian dynamics: dynamics of rigid bodies. Prerequisites: PHYS 230 or equivalent

PHYS 250. (winter)

PHYS 330Electromagnetic Field Theory5The theory of electromagnetism using vector calculus for students of physics and electrical engineering.Topics covered include static electric and magnetic fields in vacuum and linear isotropic media; time-vary-ing fields and Maxwell's equations; the wave equation and boundary conditions; propagation of electro-magnetic waves in non-conducting media. Prerequisites: PHYS 123, MATH 234. (fall)

PHYS 363Introduction to Geophysics4An introduction to physics of the earth. Topics include earth formation; plate tectonics; geomagnetism;
continuum mechanics; earthquakes and seismology; physical properties of the deep earth; high-pressure
geophysics. Prerequisites: PHYS 203, PHYS 230 or equivalent, PHYS 250.

PHYS 385Quantum Mechanics5A mathematical treatment of quantum mechanics using complex vector spaces, operators, wave functions, and abstract Dirac notation. Topics treated include wave-particle duality, the state function, the
Schrödinger equation, one-dimensional problems, the operator formalism, matrices, central forces, angular momentum, spin, identical particles. Prerequisites: PHYS 205, 310. (spring)

PHYS 391-393	Special Topics1	to 5
PHYS 396	Directed Study 1	to 5
PHYS 410	Advanced Classical Physics	5

A course in advanced classical physics, emphasizing continuous matter and fields. Topics may include these: normal modes of finite and continuous systems; Laplace's and Poisson's equations; the heat/diffusion equation; the wave equation; equations of continuity; and Euler's and the Navier-Stokes equation. Prerequisites: PHYS 310, 330. (fall)

PHYS 470Solid-State Physics4An introduction to the physics of solids for physics students. Topics covered include symmetry; crystal4structure; x-ray and neutron diffraction; types of solids and bonding; vibrations in solids—phonons; elec-
tronic band structure; metals and semiconductors; p-n junctions. Prerequisite: PHYS 385.

PHYS 480-483Interdisciplinary Core Courses3 to 5Title and content change each term these courses are offered.

 PHYS 481
 Origins: Cosmology and Culture
 5

 A study of the origin and evolution of the universe and the cultural and historical influences that have shaped our understanding of the cosmos. Satisfies the core interdisciplinary requirement. Does not count for physics elective credit. Prerequisite: junior standing.

PHYS 486Particle and Nuclear Physics5An introduction to the physics of nuclei and elementary particles for physics students. Topics coveredinclude an historical introduction to the elementary particles; symmetries and conservation laws; quantum electrodynamics; the weak interaction; introduction to quantum chromodynamics; properties ofnuclei; nuclear radiations and their detection; nuclear structure and nuclear models. Prerequisites:PHYS 330, 385.

PHYS 491-493	Special Topics	1 to 5
PHYS 496	Independent Study	1 to 5
PHYS 497	Directed Reading	1 to 5
PHYS 498	Directed Research	1 to 5
PHYS 499	Undergraduate Research	1 to 6
Literature search ar	nd laboratory or computer investigation of a research pro	blem in physics under the
supervision of a fac	ulty member. Prerequisite: permission of department chair.	